Asymptotic distributions for Random Median Quicksort

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic distributions for Random Median Quicksort

The first complete running time analysis of a stochastic divide and conquer algorithm was given for Quicksort, a sorting algorithm invented 1961 by Hoare. We analyse here the variant Random Median Quicksort. The analysis includes the expectation, the asymptotic distribution, the moments and exponential moments. The asymptotic distribution is characterized by a stochastic fixed point equation. T...

متن کامل

Asymptotic Distribution for Random Median Quicksort

The first complete running time analysis of a stochastic divide and conquer algorithm was given for Quicksort, a sorting algorithm invented 1961 by Hoare. We analyse here the variant Random Median Quicksort. The analysis includes the expectation, the asymptotic distribution, the moments and exponential moments. The asymptotic distribution is characterized by a stochastic fixed point equation. T...

متن کامل

Randomized Median Finding and Quicksort

For some computational problems (like sorting), even though the input is given and known (deterministic), it might be helpful to use randomness (probabilitic processes) in the design of the algorithm. This is analogous to the probabilistic method in which we were using probability to prove the existence of a certain object. We’ll see several examples of randomized algorithms in this course, one...

متن کامل

A refined Quicksort asymptotic

The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non-degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary se...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Discrete Algorithms

سال: 2007

ISSN: 1570-8667

DOI: 10.1016/j.jda.2006.07.003